Новый процесс получения водорода из сплава алюминия.

«Водород генерируется только при необходимости, так что вы можете произвести его ровно столько, сколько нужно», - пояснил Вудалл на университетском симпозиуме, где описывались детали открытия. Данная технология может, например, применяться совместно с небольшими двигателями внутреннего сгорания в различных применениях – портативных аварийных генераторах, газонокосилках и пилах. Теоретически, она может быть использована и на легковых автомобилях и грузовиках.

Водород выделяется самопроизвольно, когда вода добавляется к шарикам, выполненным из сплава алюминия и галлия. «При этом алюминий в твердом сплаве реагирует с водой, отрывая от ее молекул кислород», - комментирует Вудалл. Соответственно, оставшийся водород выделяется в окружающее пространство.

Наличие галлия является критичным для прохождения реакции, так как он препятствует формированию пленки оксида на поверхности алюминия при его окислении. Такая пленка обычно предотвращает дальнейшее окисления алюминия, выступая в качестве барьера. Если же ее формирование окажется нарушенным, реакция будет идти до тех пор, пока не израсходуется весь алюминий.

Вудалл открыл данный процесс с жидким сплавом алюминия-галлия в 1967 году, когда он работал в полупроводниковой промышленности. «Я очищал тигель, содержавший сплав галлия и алюминия, - рассказывает он, - Когда я добавил туда воду, произошел сильный хлопок. После этого я удалился в лабораторию и в течение нескольких часов изучал, что же именно произошло».

«Необходимым компонентом является галлий, так как он плавится при низкой температуре и растворяет алюминий, что делает возможным реакцию последнего с водой. – поясняет Вудалл. – Это было неожиданным открытием, так как хорошо известно, что твердый алюминий не взаимодействует с водой».

Конечными продуктами реакции являются галлий и оксид алюминия. Сжигание же водорода приводит к образованию воды. «Таким образом, никаких токсичных выбросов не получается, - говорит Вудалл, - Важно отметить и то, что галлий не участвует в реакции, так что его можно утилизировать и использовать вновь. Это важно, так как сейчас этот металл намного дороже алюминия. Впрочем, если данный процесс начнет широко использоваться, то добывающая промышленность сможет выпускать более дешевый низкосортный галлий. Для сравнения, весь используемый сейчас галлий имеет высокую степень очистки и используется, главным образом, в полупроводниковой промышленности».

Вудалл говорит, что, так как водород может использоваться вместо бензина в двигателях внутреннего сгорания, возможно применение методики на автомобильном транспорте. Однако для того, чтобы технология смогла конкурировать с бензиновой, необходимо снизить стоимость восстановления оксида алюминия. «Сейчас стоимость одного фунта алюминия превышает $1, и поэтому вы не сможете получить количество водорода, эквивалентное бензину по цене $3 за галлон», - поясняет Вудалл.

Впрочем, стоимость алюминия может быть снижения, если он будет получаться из оксида с помощью электролиза, а электроэнергия для него будет идти с АЭС или ветряных станций. В этом случае алюминий может производиться прямо на месте, и отпадает необходимость в передаче электроэнергии, что снижает общие затраты. Кроме того, такие системы могут располагаться в удаленных районах, что особенно важно при постройке атомных электростанций. Данный подход, по мнению Вудалла, позволит уменьшить использование бензина, снизить загрязнение и зависимость от импорта нефти.

«Мы называем это водородной энергетикой на основе алюминия, - говорит Вудалл, - Причем не будет никаких сложностей, чтобы переделать двигатели внутреннего сгорания на работу от водорода. Все, что нужно – заменить их топливный инжектор на водородный».

Также система может применяться и для питания топливных ячеек. В этом случае она уже может конкурировать с бензиновыми двигателями – даже при сегодняшней высокой стоимости алюминия. «КПД систем на топливных элементах составляет 75%, тогда как двигателя внутреннего сгорания – 25%, - говорит Вудалл, - Таким образом, как только технология топливных ячеек будет широко доступной, наша методика извлечения водорода станет экономически оправданной».

Ученые подчеркивают ценность алюминия для генерации энергии. «Большинство людей не догадывается, насколько много энергии заключено в нем, - поясняет Вудалл, - Каждый фунт (450 граммов) металла может дать 2 кВт*часа при сжигании выделившегося водорода, и еще столько же энергии в виде тепла. Таким образом, средний автомобиль с баком, заполненным шариками из сплава алюминия (около 150 кг) сможет проехать порядка 600 км, и это будет стоить $60 (при этом предполагается, что оксид алюминия затем будет утилизирован). Для сравнения, если я залью в бак бензин, то буду получать с каждого фунта 6 кВт*часов, что в 2.5 раза больше энергии от фунта алюминия. Другими словами, мне нужно будет в 2.5 раза больше алюминия, чтобы получить такое же количество энергии. Однако важно то, что я полностью исключаю бензин, и применяю вместо него дешевое вещество, доступное в США».

www.physorg.com